Formula Quiz Math 213 Multi-Variable Calculus

Name \qquad

1. length of a vector in Space \qquad
2. 2 dimensional dot product $\mathbf{u} \cdot \mathbf{v}=$ \qquad
3. 3 dimensional dot product $\mathbf{u} \cdot \mathbf{v}=$ \qquad
4. Angle between two vectors \qquad
5. Cross product $\mathbf{u x v}=$ \qquad
6. parametric form equations of a line in space \qquad
7. symmetric form of the equations of a line in space \qquad
8 Standard equation of a plane in Space \qquad
8. general form of the equation of a plane in Space \qquad
9. Cartesian (rectangular)to cylindrical: $\mathrm{x}=$ \qquad $\mathrm{y}=$ \qquad $\mathrm{z}=$ \qquad
10. Cartesian (rectangular) to cylindrical $r^{2}=$ \qquad $\tan \theta=$ \qquad $\mathrm{Z}=$ \qquad
11. Total differential: \qquad

15 Chain rule one independent variable \qquad
16. Chain rule two independent variables
17. Chain rule implicit differentiation \qquad
19. Directional Derivative \qquad
20. Gradient of $f(x, y)$
$\nabla \mathrm{f}(\mathrm{x}, \mathrm{y})=$ \qquad
21. Second Partials Test
f must have continuous second derivatives on an open region containing point (a, b) for which
$\mathrm{f}_{\mathrm{x}}(\mathrm{a}, \mathrm{b})=$ \qquad $\mathrm{f}_{\mathrm{y}}(\mathrm{a}, \mathrm{b})=$ \qquad
To test for extrema consider the quantity: $\mathrm{d}=$ \qquad

1. if $d>0$ and $f_{x x}(a, b)>0$, then f has a \qquad at (a, b)
2. if $d>0$ and $f_{x x}(a, b)<0$, then f has a \qquad at (a, b)
3. if $d<0$ then $(a, b, f(a, b))$ is a \qquad
4. the test is inconclusive if $d=$ \qquad
5. Ellipse \qquad
6. Ellipsoid \qquad
7. Hyperbola \qquad
8. Hyperboloid of one sheet \qquad
9. Hyperboloid of two sheets \qquad
10. Elliptic cone \qquad
11. Elliptic Paraboloid \qquad
12. Hyperbolic paraboloid \qquad
13. If \mathbf{u} and \mathbf{v} are non zero vectors, then the projection of \mathbf{u} onto \mathbf{v} is given by
14. The distance between a plane and a point Q (not in the plane) is given by $\mathrm{D}=$
15. The distance between a point Q and a line in space is given by $\mathrm{D}=$
16. How can gradients be used to find a directional derivative? \qquad
17. What is Lagrange's Theorem? \qquad
Bonus: What is the formula for least squares regression for a line?

Write the answers to the following common derivatives (different with respect to x)
$35 \arctan x$
$36 \operatorname{arcsec} x$
$37 \operatorname{arccot} x$
$38 \operatorname{arccsc} x$

39 the formula for integration by parts is: \qquad
40 the slope of a parameterized curve is: \qquad

