AP Calculus - Test of Basic Facts - Solutions

Each of the following questions are to be completed without the aid of a calculator, textbook or notebook.

Sketch the following graphs on the axes provided:
2) $y=k$

1) $y=x$
2) $x=k$

3) $y=x^{3}$

4) $y=x^{2}$

5) $y=\sqrt{x}$

6) Volume of a cone:
7) Volume of a cone:
8) $y=\ln x$

$V=\frac{1}{3} \pi r^{2} h$

State the formula for each of the following:
15) Area of a triangle: $\quad A=\frac{1}{2} b \cdot h$
16) Area of a parallelogram: $A=b \cdot h$
17) Area of a rectangle: $\quad A=l \cdot w$
18) Area of a square: $\quad A=s^{2}$
19) Area of a Circle: $\quad A=\pi r^{2}$
20) Area of a trapezoid: $\quad A=\left(\frac{b_{1}+b_{2}}{2}\right) h$
20) Arc length:
$a=r \theta$ (θ measured in radians)
21) Volume of a cone: $V=\frac{1}{3} \pi r^{2} h$
22) Volume of a pyramid $\mathrm{V}=1 / 3 \mathrm{Bh}$
23) Volume of a sphere:

$$
V=\frac{4}{3} \pi r^{3}
$$

24) Surface area of a sphere:

$$
A=4 \pi r^{2}
$$

25) Volume of a cylinder:
$V=\pi r^{2} h$
26) Surface area of a cylinder:

$$
A=2 \pi r^{2}+2 \pi r h
$$

27) Volume of a rectangular prism:
$V=l w h$
28) State the pythagorean theorem:
$a^{2}+b^{2}=c^{2}$
29) For what kind of triangles can the Pythagorean Thm. be used: right triangles.

Label the lengths of the sides of the following triangles:
30)

31)

Note: this is labeling the ratios of the sides not the actual side lengths
32) What is the formula used to find the slope of a line? $m=\frac{r i s e}{r u n}=\frac{\Delta y}{\Delta x}$
33) What is the point slope form of the equation of a line? $\left(y-y_{o}\right)=m\left(x-x_{o}\right)$
34) How do you find the inverse of a function? Switch x and y, solve for y.
35) How does the graph of a function relate to the graph of the inverse of the function? They are reflections of each other through the line $y=x$.
36) How does a function relate algebraically to its inverse?

$$
f\left(f^{-1}(x)\right)=x \text { and } f^{-1}(f(x))=x
$$

37) One degree equals how many radians? $1^{\circ}=\frac{\pi}{180}$
38) One radian equals how many degrees? $1 \mathrm{rad}=\frac{180}{\pi}$
39) State three forms of the pythagorean trigonometric identity (each using different trigonometric functions)

$$
\sin ^{2}(\theta)+\cos ^{2}(\theta)=1 \quad 1+\cot ^{2}(\theta)=\csc ^{2}(\theta) \quad \tan ^{2}(\theta)+1=\sec ^{2}(\theta)
$$

Write each of the following in terms of $\sin \theta$ and $\cos \theta$:
41) $\tan \theta \frac{\sin \theta}{\cos \theta}$
42) $\cot \theta \frac{\cos \theta}{\sin \theta}$
43) $\sec \theta \frac{1}{\cos \theta}$
44) $\csc \theta \frac{1}{\sin \theta}$
45) $\sin (2 \theta) \underline{2 \sin \theta \cos \theta}$
46) $\cos (2 \theta) \quad \frac{1-2 \sin ^{2} \theta}{}=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1$

Note: for $\cos (2 \theta)$ all 3 versions are required
47) Sketch a graph that has one vertical asymptote, but no other asymptotes.

48) Sketch a graph that has one horizontal asymptote, but no other asymptotes.

Given the function $y=-a \sin b(x-c)+d$, describe the role of the following parameters:
49) the initial negative sign: reflection on the x-axis.
50) a: vertical stretch/compression.
51) b: horizontal stretch/compression.
52) c: horizontal translation.
53) d: vertical translation.
54) Whole numbers: $0,1,2,3 \ldots$
55) Natural numbers: $1,2,3 \ldots$ (note: a common mistake is to forget the ...

56 Real numbers: rational numbers U irrational numbers
(any number that is rational or irrational is real)
57) Rational numbers: any number that can be written in the form p / q where p and q are integers and $q \neq 0$

OR Rational numbers: any number that can be written as a decimal that terminates or repeats
58) Irrational numbers: decimals that neither terminate nor repeat
59) Integers: ...-3,-2,-1,0,1,2,3,... (note: don't forget the ...)
60) Rewrite the power $\#^{-\frac{a}{b}}: \frac{1}{\sqrt[6]{\#^{a}}}$ or $\frac{1}{\sqrt[6]{\#^{a}}}$

